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Thermosolutal convection provides a testbed for applications of nonlinear dynamics 
to fluid motion. If the ratio of solutal to thermal diffusivity is small and the solutal 
Rayleigh number R, is large, instability sets in at  a Hopf bifurcation as the thermal 
Rayleigh number R, is increased. For two-dimensional convection in a rectangular 
box the fundamental mode is a single roll with point symmetry about its axis. The 
symmetries of periodic and steady solutions form an eighth-order group with 
invariant subgroups that describe pure single-roll and multiroll solutions. A 
systematic numerical investigation reveals a rich variety of spatiotemporal 
behaviour in the regime where R, 9 R, -R,  > 0. Point symmetry is broken and 
there is a branch of spatially asymmetric periodic solutions. These mixed-mode 
oscillations lose their temporal symmetry in a subsequent bifurcation, followed 
eventually by a transition to chaos. The numerical experiments can be interpreted 
by relating the physical form of the solutions to an appropriate bifurcation structure. 

1. Introduction 
Double convection offers examples of a wide range of dynamical behaviour in 

continuous fluid systems. Travelling waves, standing waves and steady motion have 
all been detected in laboratory experiments on convection in binary fluids and their 
interactions can be compared with theoretical predictions. Idealized thermosolutal 
convection provides the simplest model problem and the behaviour of a layer with 
a bottom-heavy solute concentration, destabilized by heating from below, has been 
studied in considerable detail. In the absence of motion the density gradient is 
proportional to the difference between the solutal Rayleigh number R, and the 
thermal Rayleigh number R, but i t  is possible to excite either travelling waves or 
periodic oscillations (depending on the lateral boundary conditions) when R, 4 R,, 
since the solute diffuses less rapidly than heat. When R,,R, are both large and 
R, x R, there is a static solution in which the density is almost uniform. The 
different diffusion rates ensure, however, that any motion produces large gradients 
in density. Hence the dynamics in this regime is particularly rich. Earlier numerical 
investigations have been concerned with complicated temporal behaviour in a 
system constrained by imposed spatial symmetries. Here we consider bifurcations at 
which those symmetries are broken and follow the resulting branches of mixed-mode 
soh tions. 

The symmetries of both steady and periodic solutions can be classified by 
establishing the appropriate group structure. McKenzie ( 1988) has discussed 
bifurcations involving symmetry changes in some detail, emphasizing temporal as 
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well as spatial symmetries. His systematic treatment exploits the formalism 
developed by crystallographers to study periodic lattices. This general method is 
particularly effective in describing planform changes in three-dimensional con- 
vection. We shall, however, be concerned with a two-dimensional configuration, 
where the symmetries are simpler to describe. This idealized problem allows us to  
develop an explicit treatment of the symmetries of the system and of its solutions. 
The appropriate eighth-order symmetry group contains the symmetries of pure 
steady and periodic solutions as invariant subgroups. These symmetries may be 
broken in secondary bifurcations leading to  branches of mixed-mode solutions, 
whose remaining symmetries can be predicted. 

The value of this general approach is demonstrated by applying i t  to a numerical 
study of symmetry breaking in the nonlinear regime. We consider convection in the 
rectangular region (0 < x < A ;  0 < z < 1) with mirror symmetry about the lateral 
boundaries. I n  most previous numerical experiments point symmetry was imposed 
about the roll-axis a t  x / A  = z = $. Thus the stream function Y, the temperature 
fluctuation 0 and the fluctuation in solute concentration C possessed the 
symmetry 

This is the symmetry of the fundamental eigenfunction of the linear problem, with 
a single roll in the domain. We shall investigate behaviour when the constraint (1) 
is relaxed. Although the oscillatory solutions are initially point-symmetric we find 
that as R ,  is increased there is a bifurcation a t  which the symmetry (1)  is broken. The 
branch of spatially asymmetric solutions can then be followed until it approaches a 
heteroclinic bifurcation. Some preliminary results have been reviewed elsewhere 
(Moore & Weiss 1990; Weiss 1990). Similar behaviour has been found for two- 
dimensional magnetoconvection (Weiss 1981 ; Proctor & Weiss 1982), where the 
bifurcation structure can be related to a seventeenth-order model system (Nagata, 
Proctor & Weiss 1990). This model confirms that asymmetric oscillations correspond 
to mixed-mode solutions on solution branches that bifurcate from the branches with 
symmetric single-roll or two-roll solutions in the region. Physically, narrow solutal 
plumes combine with broader thermal plumes to produce complicated density 
distributions which dominate the motion. 

The transition from spatially symmetric to asymmetric periodic oscillations is 
obscured by the appearance of temporal chaos. Huppert & Moore (1976) discovered 
aperiodic behaviour for solutions with imposed point symmetry and an aspect ratio 
A = 2/2. Subsequently Moore et al. (1983) and Knobloch et al. (1986b), using the same 
finite-difference code with R, = lo4 and a mesh interval Ax = A/N,, N ,  = 12 found 
that there was a bubble of chaos contained between two cascades of period-doubling 
bifurcations and followed by more complicated time-dependent behaviour ; they also 
used a different code to investigate behaviour with A = 1.5 and N,  = 24, and 
established the existence of several bubbles towards the end of the oscillatory 
branch. This bifurcation structure corresponded to that found in low-order model 
systems where chaos is caused by a heteroclinic bifurcation with eigenvalues that 
satisfy Shil’nikov’s criterion (Guckenheimer & Holmes 1983 ; Wiggins 1988). Indeed, 
i t  has since been shown analytically that the Shil’nikov mechanism leads to chaos in 
the partial differential equations in a particular asymptotic limit as A + 0 (Proctor & 
Weiss 1990). As more powerful computing facilities became available the numerical 
experiments were repeated a t  much higher resolution. Shi & Orszag (1987)’ using 
spectral methods, showed that for A = 4 2  the first bubble got no further than the 
first period-doubling bifurcation ; this has been confirmed by us and we have also 
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(x,z)+(A-x,l-z), (V,0,Z)+(Y,-O,-Z). (1) 
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demonstrated that the complete cascade just survives with A = 1.5 (Moore, Weiss & 
Wilkins 1990b). The bifurcation structure is apparently robust but sensitive to 
changes in all parameters, so that chaos appears in this bubble if either the physical 
parameter R, or the geometrical parameter h or the discretization parameter A x  is 
increased. Although Shi & Orszag (1987) found examples of solutions with period two 
and period three they claimed that with sufficiently high resolution all solutions on 
the oscillatory branch were periodic. They also asserted that chaotic behaviour was 
a result of insufficient resolution (Goldhirsch, Pelz & Orszag 1989). We have, 
however, succeeded in showing that the transition to chaos for h = 1.4 as Ax + 0 is 
consistent with the bifurcation sequence in quadratic maps, as expected for the 
Shil’nikov mechanism (Moore et al. 1990b). Shi & Orszag were correct in emphasizing 
the importance of ensuring adequate resolution but failed to recognize the underlying 
bifurcation structure ; so they misinterpreted their own results. 

The advantage of numerical experiments is that specific bifurcations can be 
located and identified. Care and experience are, however, needed in order to interpret 
the results correctly. All bifurcations are affected by discretization. Even if the 
bifurcation structure is robust the bifurcation sets will be shifted in parameter space. 
In addition, truncation may introduce extra bifurcations that are not present in the 
partial differential equations, owing to lack of spatial or temporal resolution. These 
two situations can be distinguished by introducing extra parameters (e.g. the mesh 
interval and timestep) to represent discretization and then establishing the 
bifurcation structure in the limit as those parameters tend consistently to zero 
(Moore et al. 1990b). To achieve this it is necessary to understand both the effects of 
numerical errors and the underlying bifurcation structure of the problem. 

In the next section we outline our model problem and establish the group structure 
that describes the symmetries of the system and of its solutions. The behaviour of 
solutions with point symmetry is discussed in $3. Next, in $4, we locate the 
symmetry-breaking bifurcation and describe mixed-mode periodic solutions. The 
branches of mixed-mode oscillatory solutions are followed through saddle-node and 
period-doubling bifurcations to chaos in $5. Then, in $6, the bifurcation structure is 
discussed and related to normal form equations. In the h a 1  section we assess the 
significance of these results and their application to a wider class of problems. 

2. Symmetries of the model problem 

the non-dimensional equations 
Two-dimensional thermosolutal convection in a Boussinesq fluid is described by 

a, w + a( Y,  w )  = fY[Rs a, Z--BT a, 8 + Vw], (2) 
a,s+a(v,q =~,Y+vw, (3) 
a,c+ap,z) = a, Y+AW, 

where the vorticity 
w = -VY 

(4) 

(5) 
(Veronis 1968; Huppert & Moore 1976; Knobloch et al. 1986b). Here the normal- 
ized temperature T = i-z+ 8(x, z, t ) ,  the normalized solute concentration 
S = i-z+Z(z, z ,  t )  and 6, T are the ratios of the viscous and solutal diffusivities 
respectively to the thermal diffusivity. We impose reflection symmetry about the 
lateral boundaries and adopt idealized (stress-free) boundary conditions so that 

Y = a i Y = S = Z = O  on z = O , 1 ,  (6)  
Y = 3; Y = a,@ = a,Z = 0 on x = 0 , A .  (7) 
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The system (2)-(7) depends on five dimensionless parameters, four physical (R,, R,, 
u,7) and one geometrical (A) .  

This system has three important symmetries. The first, m,, corresponds to 
reflection in the vertical plane x = +A (lefkright symmetry) so that 

(z,z)--t(h-x,z) ,  (U,@,C)+(- Y,@,-o (8) 

The second, m,, corresponds to reflection in the horizontal plane z = 
symmetry) so that 

(up-down 

(x,z)+(x,l-z),  (!P,@,Z)+(--!P,-@,-Z). (9) 

The third, i = m,m,, is the point symmetry (1) .  Thus the system (2)-(7) has the 
spatial symmetry of a rectangle, corresponding to the fourth-order dihedral group D,  
(Nagata et al. 1990). In addition, it has a symmetry with respect to arbitrary 
displacements of the origin in time (t + t f p ,  p E %), corresponding to a Lie group F. 
The full symmetry group is therefore D, @ F.  

Any solution can be expanded in Fourier series as 

Y(z, z,  t )  = C x a,,(t) sin (mnxlh) sin nxz, 
m n  

@(z, z ,  t )  = x bmn(t) cos (mnxlh) sin nxz, 
m n  

C(z, z, t )  = C d,,(t) cos (mxxlh) sin nxz. 
m n  

Solutions may be invariant under one or more spatial symmetries. A solution that is 
invariant under m, has m even in (10)-(12); the fundamental solution with this 
symmetry has two rolls in the domain and a,, =I= 0. A solution invariant under m, has 
n even ; the fundamental solution has two stacked rolls and a,, 9 0. Solutions with 
point symmetry are invariant under i and have (m+n)  even in (10)-(12); the 
fundamental has a,, + O .  Solutions with both m and n even have the full D, 
symmetry ; the fundamental has four rolls and aZ2 =+ 0. There are also infinitely many 
other multiroll solutions. It can easily be verified that these symmetries are 
preserved as the solutions evolve in time. 

Now the system (2)-(7) possesses a trivial static solution Y = 8 = C = 0 for all 
values of the parameters. For 7 < 1 and R, > R$) = R , ~ ~ ( l + u ) / [ u ( l  - 7 ) ] ,  where 
R, = A*( 1 + h2)3/A4 is the critical Rayleigh number when R, = 0, convection sets in at  
an oscillatory (Hopf) bifurcation when R, = R$? and this is followed by a stationary 
bifurcation at R, = R$) > R$). We shall adopt standard values for the parameters 
and restrict our attention to behaviour with u = 1,  7 = 10-i, R, = lo4 and h = 1.5. 
Thus we are only free to vary the selected parameter R,. Then the first mode to 
become unstable is a single roll with point symmetry i ,  followed by two rolls with 
mirror symmetry m,. Values of R$) and R$) for modes with different symmetries are 
listed in table 1. Note that the bifurcations for the single-roll and two-roll solutions 
occur close together, since R, % R,, and that the stacked rolls only appear at much 
higher values of RT. 

In  what follows we shall only be concerned with interactions between single-roll, 
two-roll and stacked-roll solutions, with symmetries i, m, and m, respectively. It is 
first necessary to establish the appropriate symmetry group for this problem. 
McKenzie (1988) has outlined a systematic procedure based on the formalism 
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Two 
stacked 

Single-roll Two-roll rolls Four rolls 

Symmetry i mz mz D2 
(m, 4 (1 ,  1)  (2, 1) (1, 2) (2, 2) 
R ( O )  7 725 8616 39916 24 890 
RW 32 283 32 791 50 864 42 191 

TABLE 1. Bifurcation values for R,  = lo', A = 1.5, T = 10-i and IT = 1 

developed for crystallography but our simple two-dimensional problem allows an 
explicit description of the symmetries of steady and periodic solutions which 
demonstrates the power of this approach. 

We begin by considering bifurcations involving steady solutions only, so that all 
solutions retain the symmetry Y. The general theory has been discussed by Sattinger 
(1978) and Golubitsky & Schaeffer (1985); here we follow the treatment of the 
analogous problem in magnetoconvection by Nagata et al. (1990). The trivial solution 
has the full D, symmetry of the system, which is broken at a stationary bifurcation 
when R,  = R$). Solutions on branches emerging from this primary bifurcation have 
2, symmetry corresponding to one of i, m, or m,. For R ,  > R$) there are always two 
solutions related by the broken symmetries : hence there are only pitchfork 
bifurcations from the trivial solution, giving rise to two equivalent solution branches. 
For example, the two equivalent single-roll solutions with symmetry i correspond to 
rolls rotating in opposite directions, which are related by the symmetry m, or by the 
symmetry m, = im,. The symmetry of pure nonlinear solutions may be broken at  a 
secondary bifurcation, giving rise to branches of mixed-mode solutions that only 
possess the trivial symmetry E .  These branches may provide links between branches 
with different symmetries but it is not possible to recognize those symmetries by 
inspecting the mixed-mode solutions. 

We now extend this description to include periodic solutions, together with 
interactions between steady and periodic solutions (but excluding any quasi-periodic 
or aperiodic behaviour). Then the continuous symmetry 9- is broken and we regard 
all solutions as being periodic with some period P. To find this period we inspect 
solutions at times t ,  t + p  as both t and p are varied continuously. If the solution is 
invariant for all p over some finite interval then it is steady and we may choose P 
arbitrarily. If the solution repeats only at intervals p = rP ( r  = 1,2,3, ...) then we 
choose P as the least period for which repetition occurs. Next we identify t + P with 
t so that t lies in the interval (0 ,P)  and (z, z, t )  lie on a cylindrical surface ('8 x 8). The 
spatial symmetries in (8), (9) and (10) can now be redefined as 

m, : (z, z, t )  -+ ( A  -z,z, t ) ,  ( Y, 8, q + ( - Y,  8, a, (13) 
m,: ( z , z , t ) + ( z , l - z , t ) ,  ( Y , @ , Z ) + ( - Y , - @ , - C ) ,  (14) 
i :  ( z , z , t ) + ( A - z , i - z , t ) ,  (Y,@,Z)+(Y,-@,-Z). (15) 

mi = m," = i2 = E :  (z,z, t ) +  ( z , z , t ) ,  (Y, @,Z)+(Y, @,C). (16) 

Each of these operations is its own inverse, so that 

To distinguish between different solutions we inspect them after half a period. 
Then all steady solutions possess the symmetry 

t , :  ( z , z , t ) +  (z ,z , t+P),  (Y, S,Z)-t (Y, @,Z). (17) 
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E m, m, i t ,  t ,  t, t ,  
E E m, F, i t ,  t ,  t ,  t, 

m, m, i E m, t ,  t ,  t ,  t, 
i i m, m, E t,  t ,  t ,  t ,  

t, t, t, t ,  t ,  i E m, m, 
t ,  t ,  t ,  t ,  t ,  m, m, E i 
t, t ,  t ,  t ,  t, m, mz i E 

TABLE 2. The group multiplication table for symmetries of steady and periodic solutions 

m, m, E z m, t e  t' t* t ,  

t, t, t, t ,  t ,  E i m, m, 

Any periodic solution on a branch emerging from a primary Hopf bifurcation 
reverses after half a period ; hence translation by !$' in time is equivalent to either of 
the symmetries that were broken at  the Hopf bifurcation. (Purely temporal 
symmetries are discussed in more detail in the Appendix; note that nonlinear 
solutions do not have any reflection symmetry in time (McKenzie 1988).) So we 
obtain three further symmetry operations : 

t, = m,t,: (z, z, t )+ (A-z,z, t+p), (Y, @,Z)+ (-  Y, @,Z), (18) 

t , = i t , :  (X,Z,t)+(h-z,l-z,t+p), (Y,@,Z)+(Y,-@,-Z). (20) 

t, = m,t,: (z,z,t)+(x, l-z,t+l$), (Y,@,Z)+(-Y, -6 ,  -Z), (19) 

The symmetry operations {E,  m,, m,, i ,  t,, t , ,  t,, te}  form the eighth-order orthorhombic 
group DZh = D,  @ 2, (corresponding to the symmetry of a cuboid) whose mul- 
tiplication table is exhibited in table 2. This abelian symmetry group describes the 
interactions with which we are concerned. 

The group has seven fourth-order invariant subgroups, each of which is isomorphic 
to D,. They describe the symmetries of pure steady and periodic solutions. Thus 
steady single-roll ( is)  solutions have the symmetries {E ,  i, t,, t,}, while steady two-roll 
(m) and stacked-roll (2s) solutions have symmetries {E ,  m,, t,, t,} and {E ,  m,, t,, t,}, 
respectively. Periodic single-roll (io) solutions have the symmetries {E ,  i, t,, t,}, while 
periodic two-roll (20) and stacked-roll (zo) solutions have symmetries {E,  m,, t,, ti} and 
{E ,  m,, t i ,  tz} ,  respectively. The group {E,  m,, m,, i} describes periodic four-roll 
solutions, which do not concern us. 

The D, symmetry of one of these pure solutions may be broken at  a secondary 
bifurcation leading to solutions with 2, symmetry only. Thus the symmetry of a pure 
steady single-roll ( is)  solution could be broken at  a pitchfork bifurcation to give 
steady mixed-mode solutions with symmetry t, or at a Hopf bifurcation to give either 
pure periodic solutions with symmetry i or mixed-mode periodic solutions with 
symmetry t,. Similarly, the symmetry of a pure periodic single-roll (io) solution can 
be broken at a pitchfork bifurcation to give either a pure, temporally asymmetric, 
periodic solution with the symmetry i ,  or mixed-mode periodic solutions with the 
symmetry t, or the symmetry t,. The 2, symmetries may themselves subsequently be 
broken at  a tertiary bifurcation. 

Mixed-mode solutions can serve to transfer stability from one branch of pure 
solutions to another. In  addition to classifying different solutions we can predict the 
symmetry properties of mixed-mode solutions on a branch connecting two branches 
of pure periodic solutions. For instance, mixed-mode periodic solutions on a branch 
linking the io and xo branches must have the symmetry t, which is common to both 
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families of pure solutions. Similarly, mixed modes linking io and zo solutions must 
have the symmetry t,. Another possibility is that the branch of oscillatory solutions 
originates in a secondary Hopf bifurcation from a branch of steady solutions. In 
magnetoconvection pure two-roll solutions with the 2, symmetry group {E,  m,} 
bifurcate from the branch of xs solutions. These oscillations are vacillatory but they 
eventually gain the full symmetry of xo solutions in a global gluing (or biclinic) 
bifurcation (Nagata et al. 1990). In  the same way, mixed-mode oscillations with the 
symmetry t ,  bifurcate from the xo branch and lose their symmetry in a biclinic 
bifurcation to give periodic solutions with the trivial symmetry E only, on a branch 
which meets the branch of asymmetric steady solutions in a Hopf bifurcation (cf. 
figure 13 of Nagata et al.). 

Periodic solutions can be represented by expanding the coefficients in (lo)-( 12) as 
Fourier series with the form 

a 

a,,(t) = almn exp (27ciltlP) etc. 
-a 

Then it follows from (17) that solutions with the symmetry t ,  must have almn = 
blmn = dlmn = 0 for 1 odd; in fact we know that steady solutions have non-zero 
coefficients only for 1 = 0. Similarly, from (18), the symmetry t ,  implies that almn = 
blmn = dlmn = 0 for l+m odd, while, from (19) and (20), t ,  and t ,  imply that the 
coefficients in (21) are zero for I +  n odd and Z+m+n odd, respectively. It follows that 
xo solutions have non-zero coefficients for m even and l+n even, zo solutions for n 
even and 1 + m even, and io solutions for 1 + m even and Z + n even. These conditions 
can be used to identify the symmetries of periodic solutions in numerical experiments 
(cf. Jennings & Weiss 1991). 

3. Solutions with point symmetry 
We investigate nonlinear behaviour by solving the partial differential equations 

numerically. The code differs only slightly from that employed by Knobloch et al. 
(1986 b, hereinafter referred to as I). The parabolic equations (2)-(4) are solved using 
a centred finite-difference scheme with second-order accuracy in space and time on 
a mesh with equal intervals in x and z; the code uses a leapfrog scheme with the 
Jacobians treated explicitly and the diffusive terms represented by a Dufort-Frankel 
scheme (Moore, Peckover & Weiss 1974). The Poisson equation (5 )  is solved using fast 
Fourier transforms and tridiagonal inversion. This scheme provides an effective 
means of exploring behaviour in different regions of parameter space, where many 
different runs are needed. As the mesh is refined, however, our second-order scheme 
converges painfully slowly in comparison with higher-order difference schemes or 
spectral methods. The code is structured so as to enhance efficiency on vector 
processors like the Cray, with each variable defined on four interlocking spatial 
meshes. The mesh interval Az = N;' and N,  = AN,. The timestep At = N;l is limited 
by accuracy requirements for the diffusive term and we set At = 0.4Az2 (Moore et al. 
1990b). For most of the computations presented here we had N, = 32, N, = 48, 
Nt = 2500. This mesh has sufficient resolution to give qualitatively accurate results. 
The value of RT at a typical codimension-one bifurcation is displaced by ART from its 
asymptotic position in the limit as Az+O and we find that ART < 20 (Moore, Weiss 
& Wilkins 1990a, b) .  Certain period-doubling bifurcations are more sensitive to 
discretization. Where necessary we have therefore refined the mesh and obtained 
results with N, = 64 and 128. 
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R T  10700 10750 10800 11OOO 11500 12000 

(4 NT 3.02 3.10 3.16 3.34 3.62 3.84 
V 22.41 23.37 24.10 26.26 30.10 33.17 

(b )  NT - 3.00 3.09 3.30 3.61 3.83 
V - 22.14 23.24 25.75 29.77 32.91 

TABLE 3. Steady solutions with point symmetry for R ,  = lo4, A = 1.5. (a) Second-order 
finite-difference scheme. ( b )  Accurate mixed scheme 

To provide global measures of nonlinear behaviour we use the r.m.8. velocity V 
given by 

and the solutal Nusselt number N ,  or the thermal Nusselt number N,, where 

N,  = l -h- l l t l zZdx,  NT = 1-A-1  1 a,Qdx, (23) 

both evaluated at either the lower or the upper boundary ( z  = 0 , l ) .  Values ofN, are 
typically higher than NT but NT displays more interesting time-dependent structure. 
Deviations from point symmetry can be detected by monitoring the mean 
temperature @ or the mean solute concentration at  the middle of the layer ( z  = 
t ) ,  since it follows from (1) that these quantities vanish for symmetrical solutions. 

3.1. Steady solutions 
Modified perturbation theory can be used to find weakly nonlinear solutions in the 
neighbourhoods of bifurcations from the trivial solution (Uuppert & Moore 1976; Da 
Costa, Knobloch & Weiss 1981). The pitchfork bifurcations are, strictly speakipg, 
supercritical though R ,  decreases along the (non-stable) steady branehes in all four 
cases. Since the trivial solution is globally attracting for 8, < R, (Joseph 1976) each 
steady branch must turn round in a saddle-node bifurcation at a, = R(Tmin) 
(R, < R',m'Q) < R',e)). We shall refer to steady convection with Rkmin) < R, < R$) 
as subcritical. 

All steady solutions that we have found are of type is and possess the point 
symmetry i. They are therefore identical with solutipns found at  lower resolution 
with that symmetry explicitly imposed in I, and similar to those described by 
Huppert & Moore (1976) for h = 4 2 .  We have tested the stability of these solutions 
by adding asymmetric perturbations to the temperature field. In all cases the value 
of 6 dropped rapidly to zero, oonfirming that these solutions are stable to such 
perturbations. These stable steady solutions exist for R, > R(Tmin); at R ,  = R',"'") 
there is a saddle-node bifurcation, with a branch of unstable steady solutions 
covering the range R',m'") < R, < R$). For N, = 32 we find that 10650 < Rkmin) < 
10700. This is slightly higher than the value (Rhmin) x 10450) obtained by Huppert 
& Moore (1976) with h = 4 2 .  In table 3 we list values of NT and V along the steady 
branch, obtained using finite differences with N, = 32. These are compared with 
accurate values calculated using a Fourier expansion with 16 modes in the x- 
direction and a fourth-order implicit Runge-Kutta finite-difference scheme (Cash & 
Moore 1980) with N, = 32 in the vertical direction. With this more accurate method 
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FIGURE 1 .  Steady convection: the stable symmetric (is) solution a t  R ,  = 10800. Contours of (a) Y 
(streamlines), ( b )  the vorticity w ,  (c) T (isotherms), (d )  the solute concentration S and ( e )  the density 
p. Full (dotted) lines denote positive (negative) values and the zero contour is broken. 

(which is only available for steady solutions) we find that R$,mln) z 10730. So our 
second-order finite-difference scheme, with N, = 32, displaces the value of R,  a t  the 
saddle-node bifurcation by about 0.6%. (The error here is three times larger than the 
typical value quoted above.) Table 3 shows that the second-order scheme 
overestimates the global quantities NT and V .  The errors are greatest (3.3% and 
5.6 % respectively) near the saddle-node bifurcation but drop to 0.3 % and 0.8 % at  
R,  = 12000. 

Figures 1 ( a ) ,  1 ( b ) ,  1 ( c )  and 1 ( d )  illustrate the spatial variation of the fields Y, w ,  
T and S for the steady solutions a t  R, = 10800. In addition we show in figure 1 ( e )  
the normalized density field 

p = R,S-R, T. (24 1 
Solid (broken) contours indicate positive (negative) values and the zero contour is 
dotted. At the bottom boundary ( z  = 0) T = S = $ and p = -$(R, -R,) while a t  the 
top ( z  = 1 )  T = S = -$ and p = $(RT-Rs). In  the regime that we are interested in 
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the density stratification is weakly unstable. Point symmetry of the solution is 
apparent from the figure. The region is occupied by a single eddy rotating clockwise. 
(An equivalent solution with the opposite sense of rotation is generated by m, or m,.) 
This produces broad thermal plumes in which are embedded narrow solutal plumes 
and the central region has an almost uniform solute concentration (8 x 0). The 
density has more structure, with extrema at the edges of the solute plumes, where 
light (heavy) fluid rises (sinks) to drive the motion. More precisely, we see from (2) 
that vorticity generation is proportional to applax. Hence positive vorticity is 
generated in the central region (where applaz > 0) while negative counter-vorticity is 
generated at  the edges, with the results shown in figure 1 (b ) .  Consequently the eddy 
is weaker at the edges of the cell and the vertical speed is greatest near the centres 
of the density plumes. This pattern is distinctly nonlinear and quite different from 
the linear eigenfunctions which describe weakly nonlinear solutions near the 
stationary bifurcation. 

It seems clear that there must be unstable steady solutions in which point 
symmetry is broken, as we shall explain in 7. In such solutions the rising and sinking 
plumes would no longer be equivalent and the centre of the eddy would be displaced 
towards one side of the region, as in magnetoconvection (Weiss 1981). We have not 
attempted to compute these solutions. 

3.2. Oscillations and temporal chaos 
From the supercritical Hopf bifurcation at  R$') there emerges a branch of periodic 
oscillations with period P. Oscillatory solutions on this branch are of type io and 
possess the point symmetry i. Moreover, since clockwise and anticlockwise motions 
are equivalent, advancing time by half a period is equivalent to the symmetries m, 
or m,. Hence they also possess the temporal symmetries t, and t,. It follows from (19) 
that the kinetic energy P has a period i2p and that 

(25) N,(z = 0 ,  t )  = NT(z = 1, t+p), N,(z = 0 ,  t )  = N ~ ( z  = 1, t+p). 

NT(z = 0,  t )  = N,(z = 1, t ) ,  N,(z = 0, t )  = N,(z = 1, t ) .  

It also follows from (15) that 

(26) 

From (25) and (26) the Nusselt numbers at the upper and lower boundaries are 
therefore equal and vary with period 13. In what follows we measure N ,  and NT at 
z = 1 unless stated otherwise. 

The branch of symmetric oscillations terminates in a heteroclinic bifurcation 
involving saddle-foci on the unstable segment of the steady branch. Before then it 
has become unstable to perturbations in which first the temporal symmetries t,  and 
t, and then the spatial symmetry i are broken. We find that for R$') < R, < 10675 
all stable solutions retain the point symmetry (15). In  particular, numerical solutions 
obtained by solving (2)-(7) over the full domain (0 < x < A ;  0 < z < 1) are identical 
with those obtained for the same N, and Nt by integrating over the region (0 < x < 4A ; 
0 < z < l }  and applying the symmetry (15) explicitly, as in I. So we shall first 
consider bifurcations in which temporal symmetries are broken and then discuss the 
loss of spatial symmetry in the next section. Note that period doubling is preceded 
by loss of temporal symmetry; this process can also be related to an appropriate 
symmetry group (McKenzie 1988), as indicated in the Appendix. 

The behaviour of solutions with point symmetry explicitly imposed was 
investigated systematically in I using a mesh with N, = 16; some runs were checked 
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with N, = 32 in order to confirm that the bifurcation structure was robust. We have 
not attempted to repeat all these calculations, though some details have been studied 
at higher resolution. Solutions on the branch emerging from the initial Hopf 
bifurcation lose stability at R, x 9150, where the temporal symmetry (16) is broken 
in a pitchfork bifurcation. The period of the quadratic quantities P, N, and Ns is 
doubled as a result. Successive period-doubling bifurcations then lead to chaos, 
followed by an inverse cascade which ends with a temporally asymmetric (Pl) 
solution at R, = 10400 and a symmetric (Sl)  solution at R, = 10500. This first 
bubble of chaos is sensitive to discretization but a careful study has confirmed that 
a narrow interval of chaos around R, = 10200 persists as Az+O (Moore et al. 1990b). 

This segment of the oscillatory branch terminates at R, x 10500 and trajectories 
are attracted to a second segment with different periodic solutions. Stable S1 
solutions appear in a saddle-node bifurcation around R, = 10300, followed by 
symmetry- breaking and a further cascade of period-doubling bifurcations which 
leads to chaotic behaviour interspersed with narrow periodic windows. The existence 
of chaos for A = 1.4 has been conclusively established by showing that the positions 
of windows with symmetrical period-five (55) and period-three (S3) solutions 
converge to different values of R, as N,+ 00 (Moore et al. 1990b). Since periodic 
solutions appear in the order familiar from quadratic maps these results show that 
all periods must exist together with related intervals of chaos (cf. Proctor & Weiss 
1990). Note, however, that the nature of the solution at a fixed value of R,  will 
change with the mesh spacing as different windows drift by. Thus we expect to find 
different behaviour within the chaotic regime for A = 1.5 with N, = 16 and N, = 32. 
With N, = 32 we have obtained a period-two (P2) solution for €2, = 10500, chaotic 
solutions for R, = 10600, 10650, and an 53 periodic solution for R, = 10700; all 
these solutions have point symmetry and are stable to asymmetric perturbations. 

With point symmetry explicitly imposed we find chaotic behaviour for R, = 
10800, 10900, 11 000. At R, = 11 100 there is a P2 solution, forming part of a period- 
doubling cascade whose accumulation point shifts from R, % 11 055 to R, = 11 123 
as the number of mesh intervals increases from N, = 16 to N, = 128 (Moore et al. 
1990a). Finally, for R, = 11 200 trajectories are attracted to the steady branch. This 
pattern of behaviour and the form of the solutions allow us to infer the existence of 
a heteroclinic connection between two saddle-foci at  R, x 11 200, as proposed in I. 

4. Asymmetric oscillations 
4.1. Loss of spatial symmetry 

When the point-symmetric S3 solution at R, = 10700 is perturbed the spatial 
asymmetry rapidly disappears ( I @ I  < but for R, = 10750 there is an aperiodic 
solution with x 0.003 and this slight spatial asymmetry does not decay. For 
R, = 10800, 10850, 10900 there is asymmetric chaos with 161 x 0.02. Figure 2(a) 
shows a trajectory for R, = 10800 projected onto the ( V ,  N,)-plane. The chaotic 
attractor differs slightly (but perceptibly) from that for the same value of R, with 
point symmetry explicitly imposed. In figure 3 we illustrate the typical spatial 
structure of the solutions after point symmetry is broken. The streamlines and the 
contours of S show a small but noticeable asymmetry, most apparent in the positions 
of eddy centres in figure 3(a) or the dotted zero-contours of S in figure 3(b). 

As R, is further increased there is a change in the nature of the spatially 
asymmetric solutions. For R, = 10950, 11000, 11 100 small asymmetric per- 
turbations develop, after transient chaos, into periodic oscillations. This transition 

I0 FLM 233 
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FIGURE 2. Spatially asymmetric solutions at R ,  = 10800. Phase portraits projected onto the 
( V ,  N,)-plane for (a )  a slightly asymmetric chaotic trajectory and (b)  an asymmetric S1 orbit 
with symmetry 1,. Time series for the periodic S1 solution, showing (c) Vand (d )  N, as functions of 
time t .  

FIGURE 3. Loss of spatial symmetry in the aperiodic solutions at R ,  = 10800. 
Contours of (a)  Y and ( b )  S at two different times. 
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FIQURE 4. Phase portraits for spatially asymmetric periodic solutions. Solutions with temporal 
symmetry t, at R ,  = 1 I500 on (a) the first segment and (b)  the second segment of the asymmetric 
S1 branch. Loss of temporal symmetry is shown by the equivalent orbits for P1 solutions at R ,  = 
11600 with ( c ) N T  at z =  1 and ( d ) N ,  at z = O .  

has been followed by Moore et al. (1990a) for R ,  = 11 100 and apparently similar 
behaviour was reported by Shi & Orszag (1987). These new solutions lie on a branch 
that extends over the range 10690 < R, < 11 560. Figure 2 (b) shows a characteristic 
orbit, for R, = 10800, which differs significantly from any found for solutions with 
point symmetry. We notice first that the trajectory apparently describes a double 
cycle in which the maxima and minima of V are exactly repeated for different values 
of N,. The two time series in figures 2 ( c )  and 2 ( d )  confirm that P repeats each cycle 
(corresponding to clockwise or anticlockwise motion) exactly and has period while 
N ,  has period P. This is precisely what should be expected from an S1 solution that 
possesses the temporal symmetry (19) but lacks the spatial symmetry (15). It can 
moreover be confirmed that the Nusselt numbers at the top and bottom of the layer 
differ in phase by half a period, as predicted by (25). 

These symmetry properties permit us to distinguish between two different types 
of spatially asymmetric oscillations, corresponding to different mixed-mode 
solutions. The solutions we have found have the temporal symmetry t,. Hence they 
correspond to mixed-mode solutions on branches bifurcating from the branches of 
pure single-roll (io) or two-roll (xo) solutions, with symmetries i and m, respectively. 
If advancing time by half a period were instead equivalent to the symmetry 
operation m, we would immediately obtain the temporal symmetry t,. It would then 
follow that 

19-2 
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etc. but there would be no equivalence between Nusselt numbers measured at the top 
and bottom of the layer. Such mixed-mode solutions would involve pure single-roll 
solutions and solutions with two stacked rolls, with symmetries i and m, respectively. 

4.2. Mixed-mode periodic solutions 
If the trivial solution is perturbed for 10950 d R ,  4 11 150 the unstable modes 
possess point symmetry and develop into periodic or aperiodic spatially symmetric 
oscillations. These are in turn unstable to spatially asymmetric perturbations and 
gradually evolve into periodic oscillations that lack spatial symmetry but possess the 
temporal symmetry t,. This process is particularly clear for R ,  = 11 100, where the 
spatially symmetric oscillation is also periodic (Moore et al. 1990a). Using the stable 
asymmetric S1 solution a t  R, = 1 1  000 to provide initial conditions we have followed 
the branch of S1 solutions down to R ,  = 10690. For R ,  = 10675 the only stable 
solution is a spatially symmetric but temporally asymmetric P3 oscillation. (The 
form of this solution indicates that is belongs to the inverse cascade associated with 
the stable S3 solution a t  R, = 10700). When R, is increased the S1 solutions 
continue up to R ,  = 11 560 but trajectories for R ,  = 11 580 are eventually attracted 
to a different solution. The S1 solutions evolve gradually along the branch from 
R, = 10690 to R ,  = 11560 and their spatial structure remains essentially similar. 
The orbit at R, = 10690 differs only slightly from that for R ,  = 10800 in figure 2 ( b )  
and the changing lobe structure can be followed from the beginning to the end of this 
segment of the S1 branch. Figure 4(a) shows the phase portrait at R ,  = 11500. 

The spatial structure of these periodic s~lutions is depicted in figures 5 and 6 for 
R, = 10800. Figures 5 ( a ) ,  5 ( b )  and 5 ( c )  show contours of ‘Y, T and S a t  six equally 
spaced intervals spanning half a period. The first and last frames are related by the 
temporal symmetry (16) which can be used to reconstruct contours for the next half- 
period. The streamlines show a single major eddy which is reversed as an eddy with 
the opposite sense of motion migrates across the domain from right to left. (There is 
of course an equivalent solution, related to this by the symmetry operation i, in 
which the eddies migrate from left to right.) The temperature and solute 
concentration are fairly well-behaved, with rising and falling plumes in the left half 
of the region and relatively little structure on the right. This is the characteristic 
form of mixed-mode solutions involving a combination of single-roll and two-roll 
modes which combine constructively in one half of the cell and cancel in the other so 
as to produce a left-right asymmetry. 

Figure 6 shows that the dynamics is really more complicated. The density contours 
in figure 6(a) demonstrate that p has far more spatial structure than either T or S. 
The isolated maximum near the upper boundary develops into a massive plume that 
plunges downwards and disintegrates, to be succeeded by an equivalent buoyant 
plume that rises from the lower boundary. Contours of o in figure 6(b) show that 
vorticity generation is dominated by these prominent rising and sinking plumes but 
the contours are distorted as vorticity is advected by the flow. 

These details illustrate how differences between smoothly varying thermal and 
solutal fields produce strong density gradients with a complicated spatial structure. 
Thus it is not surprising that the system exhibits a great variety of dynamical 
behaviour. Near the Hopf bifurcation at  R$? the symmetric oscillations have a simple 
spatial structure with a single eddy that grows, decays and then reverses without 
change of form, as kinetic energy is transformed to potential energy and back again. 
In the fully nonlinear regime counter-vorticity is generated near both edges of the 
region, as in the steady solution of figure 1, and then spreads inwards to reverse the 
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-----______. 

FIGURE 5. Spatial structure for the S1 solution at R ,  = 10800. Contours of (a) Y,  ( b )  T and (c) S 
at equally spaced intervals of 0.1P in time. Loss of point symmetry is apparent. Note that the first 
and last sets are related by the symmetry t,. 
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FIGURE 6. As figure 5 but for (a) p and ( b )  o. Note the prominent sinking plume 
and its effect on the vorticity. 



Asymmetric oscillations in thermosolutal convection 577 

motion (cf. Moore et al. 1990~) .  Symmetry breaking implies that the system favours 
a configuration in which counter-vorticity affects only one side of the eddy. 
Nevertheless, peak values of N ,  and of V are significantly greater for the unstable 
point-symmetric solutions than for the stable S1 oscillations, as can be seen 
(approximately) by comparing figure 2 (a)  with figure 2 ( b ) .  Analogous behaviour is 
found in magnetoconvection. 

The S1 solutions appear at  R ,  = 10690 with significant asymmetry and a 
characteristic form. Hence there has to be a saddle-node bifurcation at R ,  x 10680. 
We presume that the unstable segment of the asymmetric S1 branch bifurcates 
subcritically from the original symmetric S1 branch for R ,  2 10750, perhaps in some 
narrow interval where point-symmetric S1 solutions are stable to spatially symmetric 
perturbations. Any branch that subsequently bifurcates from the symmetric S1 
branch will then be unstable to asymmetric perturbations, so we expect cascades of 
period-doubled solutions and the chaotic solutions beyond their accumulation points 
to be unstable. On the other hand, periodic solutions that appear in saddle-node 
bifurcations need not share the stability properties of the S1 branch, so symmetric 
solutions may persist in isolated windows. Conversely, asymmetric solutions may 
exist where the original S1 solution is still stable to asymmetric perturbations. This 
may explain the weakly asymmetric but apparently stable chaotic behaviour found 
around R,  = 10800 and illustrated in figure 3. Such solutions are likely to be 
sensitive to discretization but we have not investigated them in any detail. 

5. Loss of temporal symmetries 
For R ,  = 11 500 there are two distinct spatially asymmetric 81 solutions with very 

different limit cycles. The first, shown in figure 4 (a), corresponds to the S1 solutions 
that have already been described, on a segment of the solution branch which ends at 
R, x 11 570. The second, shown in figure 4 ( b ) ,  has an extra kink in each cycle but still 
retains the temporal symmetry t,. The spatial structure of these solutions resembles 
that in figures 5 and 6 for R, = 10800 though the asymmetry is more marked. The 
solutions are on a second segment which can be followed down to R ,  = 11 350 ; for 
R ,  = 11 330 trajectories are attracted to an orbit like that in figure 4 (a) .  The two 
stable segments of the S1 solution branch are apparently connected by an unstable 
segment which meets them in saddle-node bifurcations at R ,  x 11340 and R ,  x 
11 570. The resulting structure of the S1 branch is shown schematically in figure 7, 
where the period of the solutions is plotted as a function of R,. 

S1 solutions on the upper segment in figure 7 remain stable until R ,  x 11535, 
when the temporal symmetry t ,  is broken in a pitchfork bifurcation. The resulting 
asymmetry is apparent in the spatial form of the solutions which only retain the 
trivial symmetry E.  Figure 8 shows contours of Y and S at two pairs of times 
separated by an interval of 18 for R ,  = 11600. The symmetry of the velocity and 
solute concentration in figure 5 has clearly been broken. This bifurcation is also 
indicated in figure 7. 

The bifurcation gives rise to two branches of Pi solutions, related by the broken 
symmetry t,. Figure 4 (c) shows a Pi orbit for R ,  = 11 600, projected onto the (8, NT)-  
phase plane. The kinetic energy now has a period P and the extrema of V are no 
longer equal on successive cycles, as they were for R ,  = 11500 in figure 4 ( b ) .  It is 
apparent from figure 8 that (25)  no longer applies and there is no equivalence 
between Nusselt numbers a t  the top and bottom of the layer. (The conservation laws 
(3) and (4) still ensure that the time-averaged Nusselt numbers are independent of 
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FIQURE 7. Schematic bifurcation structure for the spatially asymmetric oscillatory solutions, 
showing the period P aa a function of R,. Solid (broken) lines denote stable (unstable) solutions and 
the branch of symmetric S1 solutions is indicated by a heavy line. 

2. )  Hence the phase portrait obtained using N,(z = 0, t ) ,  shown in figure 4(d),  differs 
from that for NT(z = 1, t )  in figure 4(c). Now the two P1 solutions are related by the 
symmetry m,, since phase differences can be ignored, so there is also an alternative 
solution in which N,(z = 1, t )  yields the orbit in figure 4 ( d )  while NT(z = 0, t )  gives 
that in figure 4(c). Which of these two solutions is preferred depends on the initial 
conditions, and trajectories may flip from one to the other before being attracted to 
a limit cycle. If one is attempting to follow the P1 solution branch by computing 
trajectories in the plane with coordinates V and NT(z  = 1) then it is not apparent that 
the two periodic orbits in figures 4 (c) and 4 ( d )  are equivalent until one recognizes 
that the extremal values of V are identical. 

The Pi solution branch undergoes further bifurcations which are sensitive to 
discretization. For N, = 32 we find a bubble with P2 solutions at R, = 11 540, 11 590 
and a narrow band of chaos centred on R, = 11570. When the mesh spacing is 
halved, so that N, = 64, the P1 branch remains stable throughout this range. As R, 
is further increased stable P1 solutions persist without change of form up to R ,  = 
11 720. For N ,  = 32 there follows a cascade of period-doubling bifurcations, with a P2 
solution a t  R, = 11 730, P4 a t  R, = 11 733 and chaotic behaviour over the interval 
11 736 < R, < 11 830. For R, 2 11 850 trajectories are attracted to the spatially 
symmetric steady solution. For N, = 64 the bifurcations are displaced to somewhat 
higher values of R,, with a P2 solution a t  R, = 11 770, P4 at R, = 11 780 and 
aperiodic behaviour at R, = 11785. Finally, with N, = 128 (so N ,  = 192 and Nt = 
4 x lo4) we recover P2 solutions for 11 775 < R, < 11 795 but obtain an apparently 
chaotic solution at R, = 11800. So it is likely but not certain that the bifurcation 
values have converged. 

For our choice of parameters it seems that asymmetric chaos is marginal. By 
analogy with the constrained case we expect that stable aperiodic behaviour exists 
nearby in parameter space over a wider range in R,. Moreover, the wiggles along the 
S1 branch, where the trajectory in figure 4 (b )  winds once more round the non-stable 
fixed points than that in figure 4(a), are consistent with the approach to a 
heteroclinic connection between two saddle-foci, with eigenvalues that satisfy 
Shil'nikov's criterion (Wiggins 1988). We assume, therefore, that the branch ends as 
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FIQURE 8. Spatial and temporal asymmetry for a P1 solution at R ,  = 11 600. Contours of (a) ' P a d  
(b)  S for a pair at two instants separated by an interval p. (c), (d) The same but for a second pair 
displaced in phase by 0.2P relative to the first pair. The temporal symmetry t, haa been broken. 
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shown in figure 7 and that chaos is produced by the Shil’nikov mechanism once 
again. 

6. Bifurcation structure 
We have shown how as systematic sequence of numerical experiments can be used 

to determine the symmetries of oscillatory solutions in this problem and to locate the 
bifurcations where these symmetries are broken. The properties of the spatially 
asymmetric oscillations are consistent with our assertion that they are mixed-mode 
solutions on a branch that bifurcates from the pure single-roll branch. This could 
only be verified by following the various unstable branches of time-dependent single- 
roll, two-roll and mixed-mode solutions - a formidable task for the partial differential 
equations. What is feasible is to follow the branches of steady solutions. It turns out 
that they engage in resonant interactions with three-roll solutions too, generating 
convoluted bifurcation structures which will be described elsewhere. 

In the analogous case of magnetoconvection, where point symmetry is likewise 
broken, numerical experiments yield a continuous sequence of transitions from 
oscillatory two-roll to oscillatory mixed-mode to steady mixed mode and finally to 
steady single-roll solutions (Weiss 1981). Moreover, the full bifurcation structure has 
been established for a seventeenth-order truncated model system (Nagata et al. 
1990). The agreement between behaviour in this (relatively) low-order system and in 
the partial differential equations confirms that symmetry breaking does indeed 
correspond to the appearance of mixed-mode solutions. Magnetoconvection and 
thermosolutal convection are so similar that we can be confident that the same 
correspondence applies here. 

There are several approaches that might be followed in order to establish the 
overall bifurcation structure for the problem discussed here. The most straight- 
forward procedure is to use a truncated modal expansion that describes interactions 
between single-roll and two-roll solutions only. The simplest consistent truncation 
leads to a seventeenth-order system which could be reduced to an eleventh-order 
system that preserves the same essential bifurcation structure (Nagata et al. 1990). 
Experience with the analogous problem in magnetoconvection reveals the short- 
comings of this approach : the truncated model systems possess many irrelevant 
subsidiary bifurcations with unwanted solution branches which clutter up a 
bifurcation diagram. We prefer to be economical with our bifurcations. Then it is 
possible to construct a simplified bifurcation diagram that is consistent with the 
results obtained in numerical experiments- but this can also be done from first 
principles without exploring model systems. Thus the results obtained by Nagata 
et al. (1990) already indicate the form that the bifurcation structure must have here 
and there is no need to repeat their calculations for thermosolutal convection. 

In figure 9 we have constructed a conjectural bifurcation diagram for our problem. 
This is an idealized pattern, with the minimum number of solution branches needed 
for a self-consistent picture. For simplicity we have suppressed all the bifurcations 
associated with transitions to chaos at heteroclinic bifurcations. Even so there are 
seven solution branches with eleven local and three global bifurcations. We 
distinguish between branches of single-roll, two-roll and mixed-mode solutions, 
labelled i, x and m respectively. From table 1 the pure single-roll solutions appear at 
lower values of R ,  than the two-roll solutions. The stability properties of these 
branches are determined by four significant eigenvalues and the signs of the real 
parts of these eigenvalues are displayed in the figure, with a zero eigenvalue indicated 
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FIQURE 9. Conjectural bifurcation diagram, showing branches of steady and oscillatory pure single- 
roll (is, io), pure two-roll (zs, zo) and mixed-mode (ms, mo) solutions in the (RT, V)-plane. Solid 
(broken) lines denote stable (unstable) solutions and local (global) bifurcations are indicated by 
filled (hollow) circles. The signs of the real parts of the four relevant eigenvalues are shown, with 
a zero eigenvalue for periodic solutions. This is a minimal bifurcation pattern and structure near 
the heteroclinic bifurcations is suppressed. 

for periodic solutions. Stable and unstable solutions are represented by full and 
broken lines respectively. 

We consider first pure single-roll solutions with the point symmetry i. We know 
that steady solutions exist for R 2 R(Tmin), where R',m'") < R$), so the bifurcation 
structure is that associated with a double-zero Bogdanov bifurcation with 2, 
symmetry and the oscillatory branch terminates in a heteroclinic bifurcation on the 
non-stable segment of the steady branch (Knobloch & Proctor 1981 ; Da Costa et al. 
1981 ; Coullet & Spiegell983; Guckenheimer & Holmes 1983; Weiss 1987). The upper 
pair of eigenvalues correspond to point-symmetric perturbations. Pure two-roll 
solutions with the symmetry m, have a similar structure and the lower pair of 
eigenvalues correspond to perturbations with the same symmetry. 

Next we consider the branch of oscillatory mixed-mode solutions, which bifurcates 
from the branch of oscillatory single-roll solutions as shown. (Although the normal 
form for a double Hopf bifurcation allows only quasi-periodic mixed-mode 
oscillations, resonant interactions lead to periodic mixed-mode oscillations in double 
convection.) The behaviour of solutions on this branch, summarized in figure 7, 
indicates that it too ends in a heteroclinic bifurcation. Hence there must be a branch 
of mixed-mode steady solutions with a single positive eigenvalue. This has to 
bifurcate from the branch of steady single-roll solutions and ends (for tidiness) on the 
upper part of the branch of two-roll solutions. (If it ends on the lower part there has 
to be a branch of periodic solutions emerging from a tertiary Hopf bifurcation and 
terminating in a heteroclinic bifurcation (cf. Knobloch & Moore 19W).) The signs of 
the eigenvalues then require for consistency that there should be a second non-stable 
branch of mixed-mode solutions linking the two branches of pure solutions as shown. 
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This minimal structure seems to be unique. It can be embellished with further 
branches and additional bifurcations to describe more complicated behaviour : for 
instance, there are resonant interactions with three-roll solutions, while the 
Shil’nikov mechanism involves an infinite number of bifurcations (Wiggins 1988). 

There is of course a more systematic approach. Bifurcation structures like that in 
figure 9 can be generated analytically by constructing normal form equations that 
describe behaviour in the neighbourhood of a multiple bifurcation (Arnol’d 1983 ; 
Guckenheimer & Holmes 1983). For example, behaviour near a degenerate 
codimension-three bifurcation for pure single-roll or two-roll solutions (where R, = 
RP) and R$) =RE))  is described by a second-order evolution equation of the form 

k’+ (p - c A 2 )  A + ( u  + KA’ - EA4) A = 0, (28) 

where C, E are constants and p, v, K are parameters. With E = 0 this is just the 
Bogdanov normal form equation ; the fifth-order term is added in order to represent 
the turning point a t  R, = R$Yrnin) (cf. Dangelmayr, Armbruster & Neveling 1985). To 
describe behaviour near the degenerate codimension-six bifurcation, where the 
single-roll and two-roll solutions all bifurcate simultaneously from the trivial 
solution we might construct a pair of coupled equations of the form 

A, + (pl -c,A;--F, A;)  A,  + (ul + K ~ A ;  + G,A; -E ,A: )A ,  = 0, 

A ’ , + ( p 2 - ~ , ~ ~ - ~ , ~ ~ ) A , + ( ~ 2 + ~ Z ~ ~ + G Z ~ ~ - ~ z ~ ~ ) ~ ,  = 0, (30) 
(29) 

where C,, E,,  F,, G, are constants and pi, u,, Ki  are parameters (cf. Nagata et al. 1990). 
Thermosolutal convection has a simplifying feature. The temperature and solute 
fields have similar structures (cf. (1 1) and (12)) whence it follows that the same choice 
of aspect ratio ( A  = 2.027) guarantees that the values of R$) and the values of R(Te) are 
the same for single-roll and two-roll instabilities. Hence there is a double Bogdanov 
bifurcation, with four zero eigenvalues, a t  R, = RF). For thermosolutal convection 
this is actually a bifurcation of codimension three and we should set p l  = p, in (29) 
and (30). We may expect the resulting system to yield a great variety of bifurcation 
diagrams, including one like that in figure 9. Note, however, that  the relevant 
eigenvalues along the steady branch in (28) remain real, so any chaos in the fourth- 
order system will involve mixed-mode solutions only, as in the case of D, symmetry 
(Armbruster, Guckenheimer & Kim 1989). Equations (29) and (30) have not yet been 
studied in any detail and more work is needed in order to investigate their properties. 

7. Conclusion 
We have studied a specific system in some detail in order to  demonstrate the 

interplay between physical properties of the fluid motion and constraints imposed by 
bifurcation theory. To describe the resulting spatiotemporal structure we have first 
to  classify the symmetries of the system. Then we carried out a systematic numerical 
investigation of spatially asymmetric oscillations, following branches of stable 
mixed-mode solutions from the initial symmetry-breaking bifurcation to the final 
heteroclinic bifurcation. These new results complement and extend the survey of 
pure temporal behaviour by Knobloch et al. (1986b). They also show that numerical 
experiments cannot be adequately interpreted until the associated bifurcation 
structure has been understood. 

Although there have been several numerical studies of spatial symmetry breaking 
in two-dimensional convection (Weiss 1981 ; Curry et al. 1984; Lennie et al. 1988; 
Tuckerman & Barkley 1988; Leibovich, Lele & Moroz 1989) we have succeeded in 
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providing a more precise analysis than was hitherto available. At the same time, we 
have emphasized the fact that solutions found in numerical experiments depend on 
the symmetry constraints imposed on the model problem. As we have shown, 
spatially symmetric solutions become unstable when the constraint of point 
symmetry is relaxed. As the aspect ratio is increased more unstable modes appear, 
allowing richer spatiotemporal behaviour to develop (Deane, Knobloch & Toomre 
1988; Moore et al. 1990a). Moreover, travelling waves are preferred to standing 
waves if the mirror-symmetric lateral boundary conditions (7) are replaced by 
periodic boundary conditions (Bretherton & Spiegel 1983 ; Knobloch et al. 1986~) .  In 
addition, we expect that, if three-dimensional solutions were permitted, much of the 
bifurcation structure described here would become unstable to three-dimensional 
disturbances. 

The justification for studying restricted problems is that they reveal generic 
patterns of behaviour. Thus the spatial symmetries discussed here apply also to 
axisymmetric stellar dynamos (Jennings & Weiss 1991). Our real aim is to 
understand more complicated systems. But it is only by analysing transitions in 
idealized configurations that we shall eventually be able to describe the development 
of complicated spatiotemporal behaviour in fully three-dimensional convection. 

We are grateful for discussions with Herbert Huppert, Richard Jennings, Edgar 
Knobloch, Michael Proctor and Juri Toomre. Computations were carried out on 
Cray-1S computers at ULCC. N.O. W. held a SERC Senior Fellowship while this 
research was carried out. 

Appendix. Temporal symmetries 
A dissipative system cannot have time-reversal as a symmetry, though periodic 

solutions may have a symmetry t + - t for suitably chosen origins in time (McKenzie 
1988). For example, a Hamiltonian system described by a potential V(a)  such that 
ti = - dV/da has solutions with the symmetry m,: ( t ,  a )  + ( - t ,  a )  if ci = 0 at t = 0 .  
Sinusoidal or snoidal oscillations possess this symmetry but it does not hold for a 
typical relaxation oscillation (e.g. a solution of the van der Pol equation). In 
thermosolutal convection such a symmetry (with suitable phase shifts) applies at the 
Hopf bifurcation (McKenzie 1988). In the nonlinear regime temporal symmetries 
correspond to those of the normal form equation for a Bogdanov bifurcation with 2, 
symmetry : 

(Guckenheimer & Holmes 1983). The symmetry m, holds as an approximation in the 
neighbourhood of the Hopf bifurcation at ,u = 0 or the double bifurcation at ,u = 
v = 0. It is not, however, a symmetry of finite-amplitude oscillations; they are 
influenced by the heteroclinic bifurcation at  the end of the oscillatory branch, where 
the orbit approaches a saddle point with real eigenvalues q, - p ,  p > q > 0. In fact, 
steady and periodic solutions of the van der Pol-Duffing equation (A 1)  are described 
by the symmetry group D, with elements 

li-(,u-aa2)ci+(v-a2)a = 0 (A 1) 

i :  ( t , a ) + ( t ,  -a) ,  t,:  ( t , a )+ ( t+Lp ,a ) ,  t , :  ( t ,a)+(t+l$,  -a). ( A 2 )  

Breaking the symmetry i of the trivial solution corresponds either to a pitchfork 
bifurcation, leading to steady solutions with the symmetry t,, or to a Hopf 
bifurcation leading to periodic solutions with the symmetry t , .  
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Period doubling can be described with the same formalism (McKenzie 1988). We 
consider solutions of period 2P with the symmetries t, : ( t ,  a) + ( t+P,  a),  t ,  and t ,  t,, 
which form the cyclic group Z,, with a single invariant Z ,  subgroup {E,t,}. This 
structure allows a loss of temporal symmetry (breaking t t )  followed by period 
doubling (breaking t P ) .  
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